База данных Science of Synthesis: руководство пользователя

https://science-of-synthesis.thieme.com/

Query

Results

Full Text

Explore Contents

Training & Support

△ MySOS

Search by word, author name, DOI etc.

x Clear

C Load Query

Switch to advanced search

Trends & Innovation

Advances in Organoboron Chemistry towards Organic Synthesis

Asymmetric Organocatalysis

Biocatalysis in Organic Synthesis

C-1 Building Blocks in Organic Synthesis

Catalytic Oxidation in Organic Synthesis

Catalytic Reduction in Organic Synthesis

C-H Activation

Cross Coupling and Heck-Type Reactions

Dual Catalysis in Organic Synthesis

Domino Transformations in Organic Synthesis

Flow Chemistry in Organic Synthesis

Free Radicals in Organic Synthesis

Metal-Catalyzed Cyclization Reactions

Multicomponent Reactions

N-Heterocyclic Carbenes in Catalytic Organic Synthesis

Photocatalysis in Organic Synthesis

Stereoselective Synthesis

Water in Organic Synthesis

Functional Groups

 $X-C\equiv X$, X=C=X, $X_2C=X$, CX_4 Compounds

Nitriles, Isocyanides, and Derivatives

Acid Halides, Carboxylic Acids, Esters, Anhydrides, Peroxy Acids

Explore Science of Synthesis

Amides and Derivatives, Peptides, Lactams

Thio-, Seleno-, and Tellurocarboxylic Acids, Imidic Acids, Ortho Acids

Ketenes

Ketene Acetals, Yne—X Compounds

Aldehydes

Ketones

Heteroatom Analogues of Aldehydes and Ketones

Quinones and Heteroatom Analogues

Acetals: Hal/X and O/O, S, Se, Te

Acetals: O/N, S/S, S/N, and N/N and Higher Heteroatom Analogues

Arene-X (X = Hal, O, S, Se, Te, N, P)

X—Ene—X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene—Hal, and Ene-O Compounds

Ene—X Compounds (X = S, Se, Te, N, P)

Hetarenes

Small-Ring Heterocycles, Monocyclic Five-Membered Hetarenes with One Heteroatom

Fused Five-Membered Hetarenes with One Heteroatom

Five-Membered Hetarenes with One Chalcogen and One Additional Heteroatom

Five-Membered Hetarenes with Two Nitrogen or Phosphorus Atoms

Five-Membered Hetarenes with Three or More Heteroatoms

Six-Membered Hetarenes with One Chalcogen

Six-Membered Hetarenes with One Nitrogen or

Phosphorus Ato

Heteroatoms

Six-Membered I Two Heteroator

Phosphorus Ato Six-Membered | Быстрый доступ К основным разделам контента

Hydrocarbons

Polyynes, Arynes, Enynes, Alkynes

Query

Results

Full Text

Explore Contents

Training & Support

△ MySOS

Explore Science of Synthesis

Trends & Innovation

Advances in Organoboron Chemistry towards Organic Synthesis

Asymmetric Organocatalysis

Biocatalysis in Organic Synthesis

C-1 Building Blocks in Organic Synthesis

Catalytic Oxidation in Organic Synthesis

Catalytic Reduction in Organic Synthesis

C-H Activation

Cross Coupling and Heck-Type Reactions

Dual Catalysis in Organic Synthesis

Domino Transformations in Organic Synthesis

Flow Chemistry in Organic Synthesis

Free Radicals in Organic Synthesis

Metal-Catalyzed Cyclization Reactions

Multicomponent Reactions

N-Heterocyclic Carbenes in Catalytic Organic Synthesis

Photocatalysis in Organic Synthesis

Stereoselective Synthesis

Water in Organic Synthesis

Functional Groups

 $X-C\equiv X$, X=C=X, $X_2C=X$, CX_4 Compounds

Nitriles, Isocyanides, and Derivatives

Acid Halides, Carboxylic Acids, Esters, Anhydrides, Peroxy Acids

Amides and Derivatives, Peptides, Lactams

Thio-, Seleno-, and Tellurocarboxylic Acids, Imidic Acids, Ortho Acids

Ketenes

Ketene Acetals, Yne—X Compounds

Aldehydes

Ketones

Heteroatom Analogues of Aldehydes and Ketones

Quinones and Heteroatom Analogues

Acetals: Hal/X and O/O, S, Se, Te

Acetals: O/N, S/S, S/N, and N/N and Higher Heteroatom Analogues

Arene—X (X = Hal, O, S, Se, Te, N, P)

X—Ene—X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene—Hal, and Ene-O Compounds

Ene—X Compounds (X = S, Se, Te, N, P)

Hetarenes

Small-Ring Heterocycles, Monocyclic Five-Membered Hetarenes with One Heteroatom

Fused Five-Membered Hetarenes with One Heteroatom

Five-Membered Hetarenes with One Chalcogen and One Additional Heteroatom

Five-Membered Hetarenes with Two Nitrogen or Phosphorus Atoms

Five-Membered Hetarenes with Three or More Heteroatoms

Six-Membered Hetarenes with One Chalcogen

Six-Membered Hetarenes with One Nitrogen or

Heteroatoms

Two Heteroator

Six-Membered BBEДИТЕ ЛЮбой поисковый запрос для полнотекстового

Hydrocarb ПОИСКа

Polyynes, Arynes, Enynes, Alkynes

△ MySOS

Query

Results

Full Text

Explore Contents

Training & Support

Query

Results

Full Text

Explore Contents

Training & Support

△ MySOS

By relevance O By publication date

Update

40.4.2.1.5.2 Variation 2: From Azacyclanes Using Hypochlorites

Wille, U., Science of Synthesis, (2009) 40, 917.

Hide Reaction > Show Full Text > Show TOC > Show Single Step Reactions

#2 of 279

1.4.1.3 Reduction of Pyridine Derivatives

Chen, Z.-P.; Zhou, Y.-G., Science of Synthesis: Catalytic Reduction in Organic Synthesis, (2017) 1, 157.

Hide Reaction > Show Full Text > Show TOC > Show Single Step Reactions

Совет: используйте простые структуры и сузьте свой список с помощью меню

Query

Results

Full Text

Explore Contents

Training & Support

△ MySOS

Выберите статью из списка, чтобы увидеть полный текст

Query

Results

Full Text

Explore Contents

Training & Support

△ MySOS

Hit 1 of 395

Previous / Next

11.17 Product Class 17: Thiazoles

I: 10.1055/sos-SD-011-00783

General Introduction

IUPAC uses the name 1,3-thiazole, for the heterocycle 1, although the term thiazole is recommended by CAS and more commonly used. Very early on Greek letters were employed to assign the atoms in the thiazole ring, [1] but this system has long since disappeared in favor of a conventional numbering system. All three dihydrothiazoles (thiazolines) 2, 3, and 4 are known. Thiazolidine (5) is also known as 2,3,4,5-tetrahydrothiazole (Scheme 1).

Scheme 1 Thiazoles and Their Reduced Forms

1 thiazole

L

2 2,3-dihydrothiazole 3 2,5-dihydrothiazole

4 4,5-dihydrothiazole

5 thiazolidine

Hantzsch was the first to firmly establish thiazoles as the products obtained from reactions between thiourea and α -halo carbonyl compounds, [2] although earlier claims for these compounds had been made. [3] The history of thiazole has been reviewed [4] and there are several excellent surveys which deal with the recent chemistry of thiazoles. [4–10]

Although thiazole itself is not found in nature, the thiazole ring occurs in a number of natural products including peptide alkaloids and cyclopeptides incorporating unusual amino acids. Some exhibit important antibiotic [11–13] and antifungal properties; [14] in addition, antineoplastic and cytotoxic activity [15] is shown by thiazole natural products isolated from marine species. Cyclopeptides incorporating thiazole and dihydrothiazole rings also have cytotoxic activity and several total syntheses of these compounds have been described. [16] Related natural products include a powerful cell growth inhibitor, [17,18] and others that have an unusual mechanism of interaction with microtubules. [19–25]

The most important natural product containing a thiazole ring is thiamine (vitamin B_1 , 6) (Scheme 2). Its mode of action may involve ylide intermediates. [26] Conformational analyses of some thiamine-related compounds have als

Навигация по статьям из списка совпадений Или Перейти к следующей статье

Query

Results

Full Text

Explore Contents

Training & Support

MySOS

→ Download PDF

Hit 1 of 395

Previous / Next

DOI: 10.1055/sos-SD-011-00783

Kikelj, D.; Urleb, U., Science of Synthesis, (2002) 11, 627.

General Introduction

IUPAC uses the name 1,3-thiazole, for the heterocycle 1, although the term thiazole is recommended by CAS and more commonly used. Very early on Greek letters were employed to assign the atoms in the thiazole ring, [1] but this system has long since disappeared in favor of a conventional numbering system. All three dihydrothiazoles (thiazolines) 2, 3, and 4 are known. Thiazolidine (5) is also known as 2,3,4,5-tetrahydrothiazole (Scheme 1).

Scheme 1 Thiazoles and Their Reduced Forms

1 thiazole

 \mathbb{Z}_{s}

2 2,3-dihydrothiazole 3 2,5-dihydrothiazole

4 4,5-dihydrothiazole

5 thiazolidine

Hantzsch was the first to firmly establish thiazoles as the products obtained from reactions between thiourea and α -halo carbonyl compounds, [2] although earlier claims for these compounds had been made. [3] The history of thiazole has been reviewed [4] and there are several excellent surveys which deal with the recent chemistry of thiazoles. [4–10]

Although thiazole itself is not found in nature, the thiazole ring occurs in a number of natural products including peptide alkaloids and cyclopeptides incorporating unusual amino acids. Some exhibit important antibiotic [11–13] and antifungal properties; [14] in addition, antineoplastic and cytotoxic activity [15] is shown by thiazole natural products isolated from marine species. Cyclopeptides incorporating thiazole and dihydrothiazole rings also have cytotoxic activity and several total syntheses of these compounds have been described. [16] Related natural products include a powerful cell growth inhibitor, [17,18] and others that have an unusual mechanism of interaction with microtubules. [19–25]

Откройте оглавление, чтобы найти альтернативные методы и контекст

The most important natural product containing a thiazole ring is thiamine (vitamin B_1 , 6) (Scheme 2). Its mode of action may involve ylide intermediates. [26] Conformational analyses of some thiamine-related compounds have also

Query

Results

Full Text

Explore Contents

Training & Support

■ MySOS

FUNCTIONS

Collapse Tree

Explore Contents

Щелкните, чтобы развернуть список или получить доступ к полному тексту

Query

Results

Full Text

Explore Contents

Training & Support

■ MySOS

Thiazoles » Aromatizat ... »

Hit 1 of 395

Previous / Next

11.17.3.1 Method 1: By Dehydration and Dehydroamination of Dihydrothiazoles

DOI: 10.1055/sos-SD-011-00783

Kikelj, D.; Urleb, U., Science of Synthesis, (2002) 11, 725.

Many ring cyclizations, which occur under mild reaction conditions, first give dihydrothiazoles having a leaving group (e.g., hydroxy, amino) frequently bound to C4 or C5. [319–321,704] Normally such products undergo ready elimination to form thiazoles, but sometimes this is not the case and then thermolysis, or treatment with acids, is required. For example, the aromatization of thiazol-3(2*H*)-amine under acidic reaction conditions (2 M H₂SO₄) gives the corresponding thiazoles in moderate yields. [400] When chiral substituents are present and the rate of acid-catalyzed aromatization is slow racemic products may form. [705]

The dehydration step in the synthesis of 2-substituted thiazoles 331 (X = H) from the corresponding 4,5-dihydrothiazol-4-ols 330 is accomplished by reaction with thionyl chloride, sulfuryl chloride, phosphoryl chloride, phosphoryl trichloride, or phosphoryl pentachloride, $[^{706}]$ together with many other reagents (Scheme 128). $[^{319,363,704,707-710}]$ 4-Alkoxy-4,5-dihydrothiazoles 330 (X = alkyl) also give thiazoles by the elimination of the appropriate alcohol. $[^{105,363}]$

Scheme 128 Aromatization of 4,5-Dihydrothiazoles by the Elimination of a C4 Hydroxy or Alkoxy Group [105,305,363,704,707–710]

R ¹	\mathbb{R}^2	OX Reagent	Solvent	Temp, Time	Yield ^a (%)	mp or bp ^a (°C)/Torr	Ref
OPh	Н	OEt TsOH	DMF	125–130°C, 10 min	96	84–85/1	[363]
CH ₂ NMe ₂	CH ₂ Cl	OH SOCI ₂	CICH ₂ CH ₂ C	d 65–70°C, 30 mir	76 ^b	139–141	[706]

Используйте кнопки, чтобы получить pdf, распечатать, найти ссылки или справку

Query

Results

Full Text

Explore Contents

Training & Support

Search by word, author name, DOI etc. x Clear Draw Q Submit C Load Query Switch to advanced search

Explore Science of Synthesis

Trends & Innovation

Advances in Organoboron Chemistry towards Organic Synthesis

Asymmetric Organocatalysis

Biocatalysis in Organic Synthesis

C-1 Building Blocks in Organic Synthesis

Catalytic Oxidation in Organic Synthesis

Catalytic Reduction in Organic Synthesis

C-H Activation

Cross Coupling and Heck-Type Reactions

Dual Catalysis in Organic Synthesis

Domino Transformations in Organic Synthesis

Flow Chemistry in Organic Synthesis

Free Radicals in Organic Synthesis

Metal-Catalyzed Cyclization Reactions

Multicomponent Reactions

N-Heterocyclic Carbenes in Catalytic Organic Synthesis

Photocatalysis in Organic Synthesis

Stereoselective Synthesis

Water in Organic Synthesis

Functional Groups

 $X-C\equiv X$, X=C=X, $X_2C=X$, CX_4 Compounds

Nitriles, Isocyanides, and Derivatives

Acid Halides, Carboxylic Acids, Esters, Anhydrides, Peroxy Acids

Amides and Derivatives, Peptides, Lactams

Thio-, Seleno-, and Tellurocarboxylic Acids, Imidic Acids, Ortho Acids

Ketenes

Ketene Acetals, Yne—X Compounds

Aldehydes

Ketones

Heteroatom Analogues of Aldehydes and Ketones

Quinones and Heteroatom Analogues

Acetals: Hal/X and O/O, S, Se, Te

Acetals: O/N, S/S, S/N, and N/N and Higher Heteroatom Analogues

Arene-X (X = Hal, O, S, Se, Te, N, P)

X—Ene—X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene—Hal, and Ene-O Compounds

Ene—X Compounds (X = S, Se, Te, N, P)

Hetarenes

Small-Ring Heterocycles, Monocyclic Five-Membered Hetarenes with One Heteroatom

Fused Five-Membered Hetarenes with One Heteroatom

Five-Membered Hetarenes with One Chalcogen and One Additional Heteroatom

Five-Membered

Five-Membered Heteroatoms

Six-Membered I

Phosphorus Ato Six-Membered F

Heteroatoms Six-Membered I Two Heteroator

Phosphorus Ato

Phosphorus Ato

Phosphorus Ato персональный доступ Six-Membered ДЛЯ ВХОДА В СИСТЕМУ ИЗ любого места и для сохранения ваших поисковых запросов и Hydrocarb СПИСКОВ Результатов.

Polyynes, Arynes, Enynes, Alkynes

△ MySOS

Explore Science of Synthesis

Trends & Innovation

C Load Query

Advances in Organoboron Chemistry towards Organic Synthesis

Asymmetric Organocatalysis

Biocatalysis in Organic Synthesis

C-1 Building Blocks in Organic Synthesis

Catalytic Oxidation in Organic Synthesis

Catalytic Reduction in Organic Synthesis

C-H Activation

Cross Coupling and Heck-Type Reactions

Dual Catalysis in Organic Synthesis

Domino Transformations in Organic Synthesis

Flow Chemistry in Organic Synthesis

Free Radicals in Organic Synthesis

Metal-Catalyzed Cyclization Reactions

Multicomponent Reactions

N-Heterocyclic Carbenes in Catalytic Organic Synthesis

Photocatalysis in Organic Synthesis

Stereoselective Synthesis

Water in Organic Synthesis

Functional Groups

 $X-C\equiv X$, X=C=X, $X_2C=X$, CX_4 Compounds

Nitriles, Isocyanides, and Derivatives

Acid Halides, Carboxylic Acids, Esters, Anhydrides, Peroxy Acids

Amides and Derivatives, Peptides, Lactams

Thio-, Seleno-, and Tellurocarboxylic Acids, Imidic Acids, Ortho Acids

Ketenes

Ketene Acetals, Yne—X Compounds

Aldehydes

Ketones

Heteroatom Analogues of Aldehydes and Ketones

Quinones and Heteroatom Analogues

Acetals: Hal/X and O/O, S, Se, Te

Acetals: O/N, S/S, S/N, and N/N and Higher Heteroatom Analogues

Arene-X (X = Hal, O, S, Se, Te, N, P)

X—Ene—X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene—Hal, and Ene-O Compounds

Ene—X Compounds (X = S, Se, Te, N, P)

Hetarenes

Small-Ring Heterocycles, Monocyclic Five-Membered Hetarenes with One Heteroatom

Fused Five-Membered Hetarenes with One Heteroatom

Switch to advanced search

Five-Membered Hetarenes with One Chalcogen and One Additional Heteroatom

Phosphorus Ato Hайдите обучающие Five-Membered Five-Membered Heteroatoms

видео, дополнительные

Six-Membered I

Phosphorus Ato

Six-Membered I Heteroatoms

Six-Membered РУКОВОДСТВа И документацию

Six-Membered Hetarenes with Two Unlike or More Than Two Heteroatoms, Larger Hetero-Rings

Hydrocarbons

Polyynes, Arynes, Enynes, Alkynes

Query

Results

Full Text

Explore Contents

Training & Support

■ MySOS

Best methods. Best results.

People

Editorial Board Volume Editors

Author Map Editorial Office

Chemists on SOS

User Guides & Documentation

Teaching Resources

Quick Start Guide

Video Tutorials

Ranking of Results

Case Studies

Series Preface

Editorial Guidelines

Release & Technical Product Information

What's New

System Requirements

Contact

Ask a Scientist General Help

